Измерение, испытания, и проверка сопротивления изоляции кабеля и проводов

Релейная защита и автоматика настраивается для срабатывания в том числе и от коротких замыканий, а также перегрузок и повреждения изоляции. К сожалению, при эксплуатации электрооборудования неизбежны внештатные ситуации и повреждения электросетей, поэтому настройка релейной защиты имеет своей целью не полностью устранить неполадки в электросети, а свести их к минимуму.

Устройства релейной защиты РЗА

В настоящее время термином «реле» обозначается широкая группа автоматических приборов и устройств, используемых в релейной защите, автоматике, телемеханике, телефонии и других отраслях техники. Еще в конце XIXвека появились первые плавкие предохранители, которые затем сменила электромеханическая и статическая (аналоговая) релейная защита. В нашей стране с начала 1990-хх годов такие устройства постепенно заменяются цифровыми. На данный момент большая часть устройств релейной защиты в России еще принадлежит к технике прошлых поколений, но на новых объектах или после реконструкции в подавляющем большинстве случаев ставится только цифровая релейная защита.

Качественные цифровые устройства релейной защиты выпускаются как отечественным производителем, так и зарубежными компаниями. Из устройств российского производства можно отметить несколько:

  • блок микропроцессорной релейной защиты «БМРЗ» («Механотроника» г. Санкт-Петербург);
  • «ШЭ» («Экра» г. Чебоксары);
  • «Сириус» («Радиус» г. Зеленоград).

Устройства релейной защиты зарубежного производства:

  • «Silirotec» («Siemens»);
  • «Seliam» («Schneider Electric»);
  • «SliAC», «REF» («ABB»).

Грамотная наладка релейной защиты также требует соответствующего оснащения, такого как отечественные РЕТОМ-11, РЕТОМ-21, РЕТОМ-51, РЕТОМ-61, или зарубежных аналогов. Важно, чтобы наладку релейной защиты проводили только квалифицированные специалисты, имеющие опыт работы, и умеющие качественно и в сроки выполнить эту серьёзную задачу.

Причины и последствия неисправностей РЗА

Нормируемые значения и периодичность проверок, требования к релейной защите, основные методы наладки РЗ, примеры расчета   перечислены и описаны в нормативных документах: РД «Инструкции по проверке устройств релейной защиты», ПТЭЭП, ПУЭ 7-е изд. Гл.1.8., методические пособия, справочники по устройствам РЗ. Они определяют, что прежде чем электроустановка будет допущена к эксплуатации, необходимо провести пусконаладочные работы, а для оборудования до 1000В необходимы приемосдаточные испытания. Короткие замыкания, повреждения изоляции и перегрузки возникают из-за ряда причин, некоторые из них не поддаются прогнозированию – это действия персонала, пробой или отслоение изоляции, обрыв проводов из-за природных явлений или антропогенных воздействия, включение заземленного оборудования под напряжение и так далее. Для того, чтобы минимизировать последствия таких ситуаций и требуется наладка релейной защиты после монтажа и и проверка релейной защиты в эксплуатации.

Для того, чтобы понять принцип настройки релейной защиты, необходимо знать, что происходит во время короткого замыкания. Обычно к месту короткого замыкания подходят большие токи в десятки тысяч ампер в течение очень малого времени. Они вызывают не только пробой, но и сильный нагрев и перегрев токоведущих частей. В этом случае возможно возгорание изоляции и возникновение пожара электроустановки. Наладка релейной защиты позволяет автоматически отключить часть энергосистемы с тем, чтобы обесточить поврежденную в результате аварийной ситуации часть электроустановки либо участок сети. Правильно настроенная релейная защита своевременным срабатыванием сокращает последствия аварии, а также падение напряжения в остальной сети, остановку электродвигателей и генераторов, подключенных параллельно, повреждение технологического оборудования.

Автоматические выключатели 0,4кВ тоже относятся к релейной защите, при приемосдаточных испытаниях проверяются их характеристики по перегрузке ( с выдержкой времени)  и отсечке ( мгновенно или с минимальной выдержкой времени).  Срабатывание аппаратов защиты до 0,4кВ позволяет быстро отключить поврежденный участок сети и предотвратить аварию без участия персонала: в момент прекращения подачи тока электрическая дуга гаснет, и остальная часть электросети работает в штатном режиме. Это, в свою очередь, предотвращает сбои в работе основного оборудования, его порчу и остановку производства. Потери предприятия при правильной наладке релейной защиты минимизируются.

Короткие замыкания – самые часто встречающиеся проблемы энергосистем, поскольку имеют множество различных причин. Также, производя наладку релейной защиты, необходимо учитывать, что возможны следующие ситуации:

  • замыкание на землю фазы в сети с изолированной нейтралью;
  • перегрузка;
  • понижение уровня масла в расширителе трансформатора;
  • выделение газа в результате разложения масла в трансформатор и так далее.

Согласно требованием ПТЭЭП: «силовое оборудование электростанций, подстанций и электрических сетей должно быть защищено от коротких замыканий и нарушений нормальных режимов работы устройствами  РЗА и электроавтоматики. Устройства РЗА должны быть постоянно включены, кроме устройств, которые должны выводиться из работы в соответствии с назначением и принципом действия, режимом работы энергосистемы и условиями селективности. Устройства аварийной и предупредительной сигнализации должны быть всегда готовы к действию». Таким образом, можно сделать вывод, что вторым назначением системы релейной защиты является выявление нарушений режима работы электрооборудования и сигнализация об этом персоналу, находящемуся на удалении – в случаях, если персонал присутствует, отключение с помощью налаженной релейной защиты также производится, но с задержкой времени, что дает возможность использовать человеческий фактор.

Наладка устройств релейной защиты и автоматики

Нормативные документы устанавливают, что «наладка устройств релейной защиты и автоматики проводится подготовленными сотрудниками из числа электротехнического персонала, имеющими квалификацию и опыт работы. Работа осуществляется по утвержденным руководителем предприятия методикам. Испытательное оборудование и средства измерений, которыми выполняются работы, должны иметь аттестаты испытаний и свидетельства о поверке».

На крупном предприятии в службе главного энергетика существуют участки или группы релейной защиты, автоматики и телеизмерений. Если на предприятии такой службы нет, наладкой релейной защиты занимается специализированная организация, имеющая в штате  лицензированную электролабораторию. Оперативный персонал должен проверять РЗА согласно составленному графику, путем визуального осмотра и считывания информации с блоков релейной защиты. Если сигналы о неисправностях, авариях или ошибки поступают регулярно, то проверки и наладка релейной защиты должны проводиться регулярно; в отсутствие такой возможности, вызываются сторонние оперативные выездные бригады электролабораторий.

Результаты осмотра заносятся в журнал релейной защиты и карты РЗА. В них должны отражаться все работы, выполненные за прошедший после последнего осмотра период, изменения в уставках, схемах, устройствах РЗА, введенных вновь или выведенных из работы, Также производятся записи в оперативном журнале. Фиксируются все изменения в электрических принципиальных схемах вторичной коммутации ячеек. Отсутствие исполнительной документаций на устройства РЗ, карт уставок в службе главного энергетика является серьезным нарушением требований законодательства и НД в области энергетики и влечет наказание или крупные штрафы.  В эксплуатации у потребителя персонал проводит настройку релейной защиты согласно ПТЭЭП: «проводится проверка на исправность аварийной и предупредительной сигнализации, сигнализации положения выключателей, наличие напряжения на шинах оперативного тока, всех источников постоянного и переменного тока и режим работы подзарядных устройств». В настройку релейной защиты входит также проверка сопротивления изоляции цепей оперативного тока, наличие оперативного тока, исправность предохранителей, исправность источников АВР, исправность цепей управления выключателями, цепей сигнализации а также управления коммутационными аппаратами. Важно также проверить «правильность положения автоматических выключателей, рубильников и других коммутационных аппаратов в схеме АВР и соответствие их положений первичной схеме. По установленным измерительным приборам контролируют исправность цепей трансформаторов напряжения, предохранителей».

Нормативные документы также дают перечень неисправностей РЗА, которые персонал может исправить самостоятельно. Это:

  1. Включение автоматических выключателей или замена плавких вставок в цепях ТН или питания устройств релейной защиты.
  2. Вывод из работы всех устройств РЗА при обрыве цепей отключения выключателя или другого коммутационного аппарата, с последующим выполнением диспетчером мероприятий, предусмотренных для присоединения, полностью отключенного от релейной защиты;
  3. Определение места повреждения при появлении в цепях оперативного тока замыкания на землю;
  4. Отключение устройств, действующих на автоматическое включение выключателя, при повреждении выпрямителей, питающих цепи включения электромагнитных приводов.

Нормативные документы

Нормативные документы, в соответствии с требованиями которым проводится настройка релейной защиты:

  • ПУЭ 7-е издание раздел 1, гл. 1.8 « Нормы приемосдаточных испытаний»
  • РД 34.45-51.300-97 «Объем и нормы испытаний электрооборудования»
  • Проектная документация на аппаратуру и блоки релейной защиты.
  • ПТЭЭП   
  • РД 34.35.302-90. «Типовая инструкция по организации и производству работ в устройствах релейной защиты и электроавтоматики электростанций и подстанций».
  • РД 153-34.0-35.617-2001 «Правила технического обслуживания устройств релейной защиты, электроавтоматики, дистанционного управления и сигнализации электростанций и подстанций 110-750кВ»
  • Э.С.Мусаэлян «Справочник по наладке ЭО ЭС и ПС. Аппаратура вторичных цепей»
  • Чернобровов Н.В. «Релейная защита»
  • Какуевицкий Л.И. Крутицкий А.Ю. «Справочник. Реле защиты и автоматики»
  • Методики проверки устройтсв РЗиА

Профессиональные электроизмерения электроустановок до 1000В после монтажа и в эксплуатации требуют регулярной проверки всех элементов сетей: установок, сопутствующих аппаратов защиты и, надежности заземления элементов электроустановки и проводящих элементов. Воздействие атмосферных явлений предполагает активный износ частей электрооборудования в связи с постоянной высокой влажностью, высокой кислотностью или щелочностью почвы. Поэтому особое внимание следует уделять проверке контактных соединений, защитных кожухов электроустановок и, конечно, изоляции кабелей.

Измерение сопротивления изоляции

Системы охранной безопасности, розетки, силовые и компьютерные сети, видеонаблюдение, работа серверов и коммутационных систем, и, конечно, основного оборудования производственных организаций – все это зависит от состояния проводов и кабелей. Важно регулярно проверять их изоляцию, поскольку в активно используемых людьми системах происходит быстрый износ защиты: и из-за воздействия окружающей среды, как уже было сказано выше, и из-за человеческого фактора, морального старения, естественного износа изоляции и высокой нагрузки происходит выход из строя проводов, кабелей. Чтобы избежать аварийных ситуаций и выхода оборудования из строя, рекомендуется проводить замеры сопротивления изоляции кабеля и проводов по графику. В СПб замеры сопротивления изоляции осуществляет, в том числе и наша организация, которая имеет и собственную электроизмерительную лабораторию.

Основными параметрами, по которым можно определить состояние изоляции, являются сопротивление изоляции постоянному току, коэффициент поляризации изоляции и коэффициент абсорбции изоляции. Замеры сопротивления изоляции кабеля и проводов в СПб проводятся с учетом того, что при условиях высокого износа в кабелях появляются участки с некачественной изоляцией, что приводит к утечкам тока. Следовательно, замеры должны проводиться по всем трем параметрам.

Согласно справочникам, параметры определяются следующим образом:

  1. Сопротивление изоляции постоянному току Riso (Ом) - находится замером тока утечки Iy при протекании через проводник постоянного тока (приложении выпрямленного напряжения Uv);
  2. Коэффициент поляризации изоляции Rpol - определяется отношением измеренного сопротивления через 600 секунд после приложения напряжения мегаомметра R(600) к замеренному сопротивлению через 60с R(60);
  3. Коэффициент абсорбции изоляции Kabs - отношение сопротивления R(60), измеренного мегаомметром через 60 секунд с момента приложения испытательного напряжения, к сопротивлению R(15), замеренному через 15 секунд после приложения испытательного напряжение от мегаомметра.

Для качественного замера сопротивления изоляции кабеля и проводов требуется соблюсти требования к внешней среде: температура воздуха не должна быть ниже 15 градусов Цельсия и выше 35 градусов, относительная влажность воздуха – не превышать 80%. Если измерение изоляции проводов и кабеля проводится на шнурах, проводах и кабелях в особых условиях эксплуатации или на оборудовании спецприменения, то для них используются особые ТУ, оговоренные в паспорте.

Нормативы и методы измерения сопротивления изоляции

На сегодняшний день регулируют процедуру измерения сопротивления изоляции проводов и кабеля нормативно-технические документы и действующие ГОСТы, некоторые из которых были приняты в 1976-1985 гг.:

  • 7-е издание ПУЭ;
  • Объем и нормы испытаний электрооборудования
  • ГОСТ 26567-85. Преобразователи электроэнергии полупроводниковые. Методы испытаний;
  • ГОСТ 3345-76. Кабели, провода и шнуры. Метод определения электрического сопротивления изоляции;
  • ГОСТ 3484-88. Трансформаторы силовые. Методы электромагнитных испытаний;
  • ГОСТ 3484.3-83. Трансформаторы силовые. Методы измерений диэлектрических параметров изоляции.
  • ГОСТ Р 17025-2006 Требования к измерительным и калибровочным лабораториям

Нормативные документы регламентируют сроки проведения измерений. Формы протоколов измерения сопротивления изоляции однофазной и трехфазной цепей являются рекомендованными ГОСТ Р 17025-2006. По ПТЭЭП такой протокол должен составляться раз в год для наружных систем, лифтов, и особо опасных электроустановок, и раз в три года – для объектов, не вошедших в первый перечень. В протокол вносятся результаты десяти замеров по RISO для трехфазной пятипроводной линии и 3 замеров - для однофазной трехпроводной линии. Данные замеров проверяются на соответствие требованиям ПУЭ п. 1.8.37 (7-е изд.) для электропроводок и ПУЭ п. 1.8.40 (7-е изд.) для кабельных линий после монтажа. По срокам замеров сопротивления изоляции кабеля и проводов в СПб можно сказать, что на оформление протокола тратится от одного до двух рабочих дней. Стоимость измерения сопротивления изоляции можно узнать непосредственно на сайте, посмотрев постоянно обновляемый прайс-лист.

Как заказать замер сопротивления изоляции

Замер сопротивления изоляции кабеля и проводов в СПб можно заказать, позвонив по телефону (909) 577-65-84, либо заполнив заявку на сайте. После уточнения стоимости работ по конкретному объекту, вам будет выставлен счет, по которому составляется договор. Обычное условие – 50% предоплаты за работу, и после подтверждения авансового платежа наши специалисты уточняют время и место, выезжают на объект и проводят оговоренные замеры. В течение максимум двух рабочих дней по образцу протокола, установленного НД, составляются Технический отчет или протоколы измерений, который передается Заказчику. К отчету прилагается вся необходимая разрешительная документация по замеру изоляции проводов и кабеля.

После того, как замер сопротивления изоляции кабеля и проводов в СПб завершен и принят Заказчиком, оплачивается оставшуаяся сумма. Остается только отметить, что наши специалисты-эксперты регулярно проходят экзамены у инспекторов Ростехнадзора, получили знания, умения и навыки в ходе переподготовки в учебно-методическом инженерно-техническом центре и регулярно проходят стажировки по различным специализациям для повышения уровня квалификации. Сама электроизмерительная лаборатория имеет свидетельство о регистрации и все необходимые лицензии и сертификаты, которые подтверждают право на проведение различных видов измерений и испытаний электроустановок до 110кВ включительно. В том числе – и замеров сопротивления изоляции кабеля и проводов в СПб.

При проведении пуско-наладочных работ после монтажа сопротивление изоляции кабельных линий нормируется согласно ПУЭ гл.1.8 табл.1.8.34

Испытуемый элемент Напряжение мегаомметра, В Нормируемое значение Rиз, МОм
Шины постоянного тока на щитах управления и в распределительных устройствах 500-1000 10
Вторичные цепи каждого присоединения и цепи питания приводов выключателей и разъединителей 500-1000 1
Цепи управления, защиты, автоматики и измерений, а также цепи управления машин постоянного тока, присоединенные к силовым цепям 500-1000 1
Вторичные цепи и элементы при питании от отдельного источника или через разъединительный трансформатор, рассчитаные на рабочее напряжение 60 В и ниже 500 0,5
Электропроводки, в том числе осветительные сети 1000 0,5
Распределительные устройства, щиты и токопроводы 500-1000 0,5

Сопротивление изоляции кабельных линий находящихся в эксплуатации нормируется ПТЭЭП прил. 1 табл. 37

Наименование элемента Напряжение мегаомметра, В Сопротивление изоляции, МОм Примечание
Электроизделия и аппараты на номинальное напряжение, В:   Должно соответствовать указаниям изготовителей, но не менее 0,5 При измерениях полупроводниковые приборы в изделиях должны быть зашунтированы
до 50 100
свыше 50 до 100 250
свыше 100 до 380 500 – 1000
свыше 380 1000 – 2500
Распределительные устройства, щиты и токопроводы 1000 – 2500 не менее 1 Измерения производятся на каждой секции распределительного устройства
Электропроводки, в том числе осветительные сети 1000 не менее 0,5 Измерения сопротивления изоляции в особо опасных помещениях и наружных установках производятся 1 раз в год. В остальных случаях измерения производятся 1 раз в 3 года. При измерениях в силовых цепях должны быть приняты меры для предотвращения повреждения устройств, в особенности микроэлектронных и полупроводниковых приборов. В осветительных сетях должны быть вывинчены лампы, штепсельные розетки и выключатели присоединены
Вторичные цепи распределительных устройств, цепи питания приводов выключателей и разъединителей, цепи управления, защиты, автоматики, телемеханики и т.п. 1000 – 2500 не менее 1 Измерения производятся со всеми при соединенными аппаратами (катушки, контакторы, пускатели, выключатели, реле, приборы, вторичные обмотки трансформаторов напряжения и тока)
Краны и лифты 1000 не менее 0,5 Производится не реже 1 раза в год
Стационарные электроплиты 1000 не менее 1 Производится при нагретом состоянии плиты не реже 1 раза в год
Шинки постоянного тока и шинки напряже ния на щитах управления 500 – 1000 не менее 10 Производится при отсоединенных цепях
Цепи управления, защиты, автоматики, телемеханики, возбуждения машин постоянного тока на напряжение 500 – 1000 В, присоединенных к главным цепям 500 – 1000 не менее 1 Сопротивление изоляции цепей напряжением до 60 В, питающихся от отдельного источника, измеряется мегаомметром на напряжение 500 В и должно быть не менее 0,5 МОм
Цепи, содержащие устройства с микроэлектронными элементами, рассчитанные на рабочее напряжение, В:      
до 60 100 не менее 0,5  

свыше 60

500 не менее 0,5  

Проверка наличия цепи между заземлёнными установками и элементами заземлённой установки проводится при проведении приемо-сдаточных испытаний электроустановки и в течение ее эксплуатации в сроки, устанавливаемые системой планово-предупредительных ремонтов.

Измеряемая величина – переходное сопротивление контактных соединений заземляющих элементов. Величина сопротивления измеряемого участка свидетельствует о качестве контактных соединений. Если сопротивление участка не превышает 0,05 Ом (ПТЭЭП приложение 3, п. 28.5), то при положительных результатах внешнего осмотра и механических испытаний (контрольный поджим болтовых соединений и ударная нагрузка сварных соединений) можно считать, что участок соответствует требованиям нормативов, действующих в энергетике.

При выполнении измерений используют метод непосредственного замера переходного сопротивления контактных соединений заземляющих элементов.

Для того, чтобы проверить реакцию защитных устройств электрооборудования и электросети на сверхтоки по времени срабатывания, производится замер полного сопротивления петли фаза нуль. Работа УЗО зависит от полного сопротивления цепи: сопротивления обмотки силового трансформатора, контактов в цепи и сечения фазных и нулевых жил кабеля или воздушной линии. В соответствии с ГОСТ Р МЭК 61557-3-2006 максимальная погрешность измерительной аппаратуры применяемой для измерение сопротивления петли фаза нуль в пределах диапазона измерений не должна превышать требуемое значение, указанное в НД или паспорте на СИ.

Измерительная аппаратура

Измерительная аппаратура подбирается согласно ГОСТ Р МЭК 61557-1-2006: она должна быть безопасной точной и надежной. Такие же требования относятся и к измерительной аппаратуре с дополнительными функциями, не подпадающими под действие стандартов серии МЭК 61557. Измерительная аппаратура должна также соответствовать требованиям МЭК 61010-1. В этой аппаратуре должна быть предусмотрена – и выполнена – двойная или усиленная изоляция. Степень загрязнения, согласно МЭК 61010-1, не превышать 2. Категория перенапряжения, согласно тем же нормативам, приложение J – II (вторая). Если питание подается от распределительной сети, категория перенапряжения – III (третья) . Зажимы зонда измерительного устройства должны исключить его прикосновения к частям, находящимся под напряжением. При проверке и измерении сопротивления петли фаза нуль это требование должно выполняться неукоснительно.

ГОСТ Р МЭК 51557-3-2006 предъявляет также дополнительные требования для измерительных устройств проверки сопротивления петли фаза нуль:

  1. Если при подключении нагрузочного устройства возникают переходные процессы в распределительной сети, погрешность в рабочих условиях применения не должна превышать установленных пределов в результате воздействия переходных процессов.
  2. Если при калибровке для обеспечения нулевого смещения используют внешние сопротивления, то это должно быть указано в нормативных документах на измерительную аппаратуру.
  3. Нулевое смещение должно поддерживаться в течение времени, указанного в нормативных документах на измерительную аппаратуру, независимо от любых изменений в ее диапазоне измерений или функционировании.
  4. Напряжение в точках измерения сопротивления петли фаза нуль испытуемой цепи не должно превышать аварийного значения 50 В. Это может достигаться автоматическим отключением при возникновении аварийного напряжения, превышающего 50 В, в соответствии с МЭК 61010-1.
  5. Измерительная аппаратура должна выдерживать без повреждений, создающих опасность для пользователя, подключение к распределительной сети напряжением, равным 120% номинального напряжения распределительной сети, на которое была рассчитана данная измерительная аппаратура. Защитные устройства при этом не должны срабатывать.
  6. Измерительная аппаратура должна выдерживать без повреждений, создающих опасность для пользователя, случайное подключение к распределительной сети напряжением, равным 173 % номинального напряжения, в течение 1 мин. Защитные устройства при этом могут срабатывать.

Для измерения сопротивления петли фаза нуль можно использовать любые аппаратные методы: годятся приборы советского производства и современные, так, можно применять и М-147, и ЕР-180, и MPI-551, и MZC-300, и MRP200. При измерении петли «фаза-нуль» электроизмерительная лаборатория должна по требованию предоставить копии заводских паспортов приборов, а также правила эксплуатации приборов, если заказчик измерений желает с ними ознакомиться. Указанные правила прилагаются к заводским паспортам. Приборы д для измерения должны быть сертифицированы, в сертификатах должны быть указаны метрологические характеристики соответствия, и копии этих сертификатов также должны быть предоставлены клиенту по требованию.

Методы измерения и проверки сопротивления

Измерить сопротивление петли фаза нуль можно несколькими способами. Как правило, используют один из следующих:

  1. Расчетно-формульный способ.
  2. Измерение полного сопротивления цепи фазы и нулевого защитного проводника для последующего расчета тока однофазного замыкания.
  3. Непосредственный замер тока однофазного замыкания путем замыкания на корпус или нуль.

Последние два способа не требуют расчетов, первый же использует формулу

Zпет = Zп + Zт/3

Zп – полное сопротивление проводов петли фаза – нуль,

 – полное сопротивление питающего трансформатора

Исходя из полученного значения, можно определить ток однофазного замыкания на землю

Iк = Uф/ Zпет

Если по расчетам оказывается, что ток однофазного замыкания на землю (ТОЗ) превышает допустимый ток на 30%, то требуется полный замер сопротивления петли фаза нуль Под допустимым током понимается ток, при котором в определенный временной промежуток происходит срабатывание аппарата.

В сети существует несколько видов защиты от однофазных замыканий. Плавкий предохранитель должен выдерживать трехкратный однофазный ток при коротком замыкании в невзывоопасном помещении и четырехкратный – во взрывоопасном. Для автоматического выключателя с обратнозависимой от тока характеристикой эти показатели составляют соответственно три и шесть. Автоматический выключатель с электромагнитным расцепителем при определенном заранее коэффициентом разброса уставок Кр по данным завода изготовителя имеет показатели 1,1 Кр для любых видов помещений. При отсутствии заводских данных, коэффициент в обоих случаях повышается до 1,4 для уставки до 100А, и до 1,25 для уставок более 100А. Под уставкой понимается значение некоей величины, в данном случае – сила тока, по достижении которого происходит изменение состояния системы. При проверке петли фаза нуль учитывается полное (комплексное) сопротивление всей цепи.

Требования безопасности

Проведение измерения сопротивления петли фаза-нуль требует предварительного проведения специалистами электроизмерительной лаборатории ряда организационно-технических мероприятий. Для начала определяется график работ по измерению, поскольку для каждого вида измерительного средства требуется согласовать требования руководства фирмы-клиента. Затем проверяется допуск лиц, которые должны будут осуществить измерение сопротивления. Они должны пройти соответствующий инструктаж и иметь группу по электробезопасности не ниже третьей. Работники должны иметь возраст не менее 18 лет, пройти медицинское освидетельствование, инструктаж, иметь соответствующее образование и навыки, которые определены в МПБЭЭ (Межотраслевых правилах по охране труда и эксплуатации электроустановок).

Ограничения при работе с приборами

В соответствии с теми же МПБЭЭ, запрещается производить ряд манипуляций с измерительными приборами, а именно:

  1. Работа с прибором М417 при измерении сопротивления петли фаза нуль исключает наличие заземления;
  2. Прибор должен находиться под одновременным контролем двух человек и более;
  3. Включение прибора должно быть произведено при отключенном питающем напряжении.
  4. У прибора ЕР180 существует ограничение напряжения в 250В;
  5. Нельзя нажимать кнопку запуска прибора до того, как прибор включен в сеть;
  6. Строго запрещена замена предохранителей в работающем приборе.

Помимо прочего, при измерении сопротивления петли фаза нуль требуется соблюдать ряд условий окружающей среды. Так, температура окружающего воздуха должна быть положительна, погода – сухая, без бурь, штормов и гроз. Необходимо фиксировать атмосферное давление и заносить его в протокол, но на сегодняшний день его влияние на качество измерений сопротивления не отмечено. Зато имеет значение температура проводников – степень их нагрева также фиксируется, и зависит от температуры окружающего воздуха. Если измерение проводится при малых токах и комнатной температуре, ток замыкания может вызвать повышение температуры проводника и, как следствие, повышение его сопротивления. Чтобы избежать ошибок при замерах, используется следующая методика:

  1. Проводится измерение сопротивления петли фаза нуль на вводе электроустановки.
  2. Затем замеряют сопротивление фазного и защитного проводников сети от ввода до распределительного пункта или щита управления.
  3. Следующий этап – замер сопротивления от распределительного пункта или щита управления до электроприемника.
  4. Полученные величины увеличивают для учета влияния температуры.
  5. Увеличенные значения сопротивления добавляют в величине сопротивления петли фаза-нуль

Дальнейшая подготовка проводится согласно ПУЭ: «В электроустановках до 1000В с глухозаземлённой нейтралью с целью обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых рабочих и нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или на нулевой проводник возникал ток короткого замыкания, который обеспечивает время автоматического отключения питания не превышающего нормативных значений». Нормативные значения указаны в таблице 5 Правил эксплуатации электроустановок.

Оформление результатов измерений.

Результат измерения сопротивления петли фаза нуль заносится в протокол, так же, как и данные по автоматическим выключателям, по результатам исследования специалистом-экспертов выносится вердикт о возможности, либо невозможности использования установки, а также о причинах возможных неисправностей.

Нормативные документы, на соответствие требованиям которых проводятся измерения:

  1. ПУЭ (Правила устройства электроустановок) 7-е издание раздел 1, гл. 1.8, п. 1.8.39, пп. 4, гл.1.7., п. 1.7.79;
  2. РД 34.45-51.300-97 "Объем и нормы испытаний электрооборудования";
  3. Проектная документация;
  4. ПТЭЭП (Правила технической эксплуатации электроустановок потребителей), Приложение 3, п. 28, пп. 28.4.

 

  • ПУЭ (Правила устройства электроустановок) 7-е издание, Р-1, Гл. 1.8, п. 1.8.39, пп. 2,
  • РД 34.45-51.300-97 глава 28, п. 28.2
  • РД 153-34.0-20.525-00 МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО КОНТРОЛЮ СОСТОЯНИЯ ЗАЗЕМЛЯЮЩИХ УСТРОЙСТВ ЭЛЕКТРОУСТАНОВОК
  • ГОСТ Р 8.563-96 «Методики выполнения измерений».
  • ПТЭЭП (Правила технической эксплуатации электроустановок потребителей) прил. 3, табл. 26, п. 26.1

Устройство защитного отключения предназначено для защиты людей от поражения электрическим током при непреднамеренном контакте с находящимися под напряжением проводящими частями электроустановки и для предотвращения возгорания, возникающего вследствие протекания токов утечки и замыканий на землю, или развивающихся из них коротких замыканий.

Из всех известных электрозащитных средств устройство защитного отключения является единственным, обеспечивающим защиту человека от поражения током в случае прямого прикосновения к находящимся под напряжением частям электроустановки.

Проверка работоспособности УЗО производится по следующим пунктам.

1. Проверка правильности установки УЗО в схеме электроустановки здания:

  • проверка обоснованности выбора зоны защиты УЗО (перечень нагрузки в зоне защиты, требующей обязательной установки УЗО – сантехнические кабины, ванны, сауны, розеточные группы и т.д.);
  • определение соответствия параметров УЗО расчетным электрическим параметрам схемы электроустановки здания (Uн, Iн, IΔн, IΔн.о., IΔм, Тн и т.д.);
  • определение соответствия параметров УЗО параметрам устройств защиты от сверхтоков (1н У30= IHА автомата).

2. Проверка правильности монтажа УЗО:

  • проверка правильности монтажа УЗО утвержденной схеме электроустановки здания;
  • проверка фазировки подключенных к УЗО проводников (фазных и нулевых) обозначениям на приборе;
  • проверку отсутствия соединения рабочего нулевого проводника (N) в зоне защиты УЗО с защитным проводником (РЕ), а также открытыми проводящими частями электроустановки (рабочий нулевой проводник в зоне защиты не должен иметь соединений с заземленными элементами и корпусами электрооборудования;
  • проведение контроля надежности затяжки контактных зажимов УЗО и аппаратов защиты от сверхтоков (затяжка контактных зажимов должна быть выполнена с усилием не менее 10 Н).

3. Проверка работоспособности УЗО:

  • проверки фиксации органа управления УЗО в двух четко различающихся положениях «ВКЛ» и «ОТКЛ»;
  • проверки при включенном рабочем напряжении срабатывания УЗО при нажатии кнопки «ТЕСТ» (пятикратно);
  • замера «фонового» тока утечки электроустановки (1ут);
  • замера отключающего дифференциального тока УЗО (1Д);
  • проверки работоспособности системы электрозащиты электроустановки в целом на базе УЗО (включение имитатора утечки).
    Замер отключающего дифференциального тока УЗО может производится одним из 3-х методов согласно приложения “В” стандарта МЭК 364-6-61 и ГОСТ Р 50807-95 или специализированными приборами типа MRP-120 (200), ЭК0604 и др.

Нормативные документы, на соответствие требованиям которых проводятся измерения:

  • ГОСТ Р 50807-95 «Устройства защитные, управляемые дифференциальным (остаточным) током. Общие требования и методы испытаний».
  • ГОСТ Р 50571.16-99 «Электроустановки зданий. Часть 6. ИСПЫТАНИЯ. Глава 61. Приемо-сдаточные испытания».
  • ПТЭЭП (Правила технической эксплуатации электроустановок потребителей).
  • ПОТ Р М-016-2001 Межотраслевые правила по охране труда (правил безопасности) при эксплуатации электроустановок.
  • ПУЭ (Правила устройства электроустановок) 7-е издание раздел 1, гл. 1.8, п. 1.8.37, пп.5.

Испытания расцепителей автоматических выключателей проводится с целью проверки соответствия пределов их срабатывания данным завода-изготовителя.

При вводе в эксплуатацию электроустановок, в соответствии с требованиями ПУЭ 7-го Издания, глав 7.1 и 7.2 проверяются все вводные и секционные автоматические выключатели, выключатели цепей аварийного освещения, пожарной сигнализации и автоматического пожаротушения, а также не менее 2% выключателей распределительных и групповых сетей.

В других электроустановках испытываются все вводные и секционные выключатели, выключатели цепей аварийного освещения, пожарной сигнализации и автоматического пожаротушения, а также не менее 1% остальных выключателей.

Проверка производится в соответствии с указаниями заводов-изготовителей. При выявлении выключателей, не отвечающих установленным требованиям, дополнительно проверяются удвоенное количество выключателей.

Во время эксплуатации электроустановок проверка действия расцепителей автоматических выключателей проводится в сроки, установленные системой ППР при капитальном ремонте.

В электроустановках, размещенных во взрывоопасных зонах, максимальные расцепители должны проверяться на срабатывание при капитальном, текущем ремонтах и межремонтных испытаниях, а также при неправильном их действии и отказе.

В качестве нагрузочных трансформаторов для проверки расцепителей могут быть использованы следующее испытательное оборудование (нагрузочные устройства и трансформаторы) :

  • Комплект для испытания автоматических выключателей переменного тока СИНУС;
  • НТ-74 (разработчик трест «Электроцентрмонтаж»), максимальный ток нагрузки 3000 А;
  • ТН-3 (разработчик ЦЛЭМ Мосэнерго), максимальный ток нагрузки 1800 А;
  • НТ-10 (разработчик ВНИИПЭМ), максимальный ток нагрузки 10 000 А;
  • регулятор РТ-2048 в комплекте с однофазными нагрузочными трансформаторами ТОН-7М2, НТИ-1, НТИ-10 (Ассоциация наладочных организаций, Санкт-Петербург);
  • устройства серии «Сатурн», выполняемые в двух вариантах: «Сатурн-М» и «Сатурн-М1».

Комплект СИНУС обладает следующими основными возможностями и характеристиками:

  • Испытание электромагнитного расцепителя автоматических выключателей;
  • Испытание теплового расцепителя автоматических выключателей;
  • Испытание полупроводникового расцепителя автоматических выключателей;
  • Большой, легко читаемый жидкокристаллический дисплей;
  • Хорошее качество и эргономичность измерений в сочетании с портативностью. 

Нормативные документы, на соответствие требованиям которых проведены испытания:

  • ПУЭ (Правила устройства электроустановок), 7-е изд., Р-1, гл. 1.8, п. 1.8.37, пп. 3,5.
  • ГОСТ 50345-99.
  • ГОСТ 50030.2-99.
  • РД 34.45-51.300-97. (Объем и нормы испытаний электрооборудования), Раздел 26, пп. 26.3, 26.4, таб. 26.2.
  • Паспорт, руководство по эксплуатации завода-изготовителя.

Измерение переходного сопротивления контактов.

При работе электроустановок напряжением до 1000В токи, протекающие по сборным шинам, могут достигать значения нескольких тысяч ампер, что в сочетании с "плохим" переходным контактом на сборных шинах вызывает нагрев контактного соединения, в свою очередь это может привести к аварии электроустановки (далее - ЭУ). Также в работе ЭУ возникают вибрации и динамические удары при включении нагрузок, что может негативно сказаться на контактах болтовых соединений сборных шин. В связи с этим необходим периодический (профилактический) контроль переходного сопротивления контактов и тепловизионная диагностика . Эти мероприятия является обязательными для выявления мест плохого контакта сборных шин, токопроводов и ошиновки открытых распределительных устройств 0,4-35 кВ. В закрытых распределительных устройствах эти измерения обязательны для контактов сборных шин токопроводов и ошиновки на номинальные токи 200-6300А и более.

Измерения можно производить при помощи измерителя сопротивления обмоток ИСО-1. При этом измеряют переходное сопротивление контакта и сопротивление участка целой шины такой же длины, как и контактное соединение. Величина переходного сопротивления участка шин в месте контактного соединения не должна превышать сопротивления участка шины 0,7 метра более чем на 20% . Также для контроля состояния контактных соединений ЭУ в работе сотрудниками электролаборатории ООО "РСК ГОРОД" может быть проведена тепловизионная диагностика. Преимуществом тепловизионной диагностики является работа в ЭУ без снятия напряжения при номинальной нагрузке.

1. Требования к квалификации персонала

Испытания и измерения в электроустановках напряжением выше 1000 В проводятся лицами с группой по электробезопасности не ниже:

  • производитель работ гp. IV до и выше 1000 В.;
  • член бригады гр. III до и выше 1000 В.

В электроустановках до 1000 В:

  • производитель работ гp. lll;
  • член бригады гр. III.

2. Требования безопасности

При проведении измерения сопротивления контактных соединений с объекта измерений должно быть снято напряжение и вывешен плакат "РАБОТАТЬ ЗДЕСЬ", а на коммутационный аппарат , отвечающий за подачу напряжения на часть ЭУ на которой проводятся работы, должен быть вывешен плакат "НЕ ВКЛЮЧАТЬ! РАБОТАЮТ ЛЮДИ", также на частях ЭУ оставшихся под напряжением должны быть вывешены запрещающие плакаты. Сотрудник электролаборатории обязан проверить отсутствие напряжения перед началом работы.

3. Средства измерений, используемые при проведении испытаний

Измеритель сопротивления обмоток ИСО-1; тепловизор NEC (7-я, 9-я серии).

4. Порядок проведения испытаний и измерений.

4.1. Измеряется сопротивление участка проводника без контактных соединений длиной 0,7 м.

4.2. Измеряется сопротивления контактных соединений, значения сопротивления контактных соединений не должны превышать значение сопротивления цельного проводника более чем на 20%.

5. Анализ и оформление результатов испытаний.

Первичные записи рабочей тетради должны содержать следующие данные:

  • дату измерений
  • температуру, влажность и давление
  • наименование, тип, заводской номер оборудования
  • номинальные данные объекта испытаний
  • результаты испытаний
  • результаты внешнего осмотра
  • используемую схему

Все данные испытаний сравниваются с требованиями НД, и на основании сравнения выдаётся заключение о пригодности объекта к эксплуатации.
По результатам испытаний заполняется протокол установленной формы, в соответствии с требованиями НД (ГОСТ Р 17025-2006) и согласованный с СЗУ Ростехнадзора.
Данные измерений, произведённых при завышенной (заниженной) температуре окружающего воздуха не требуется приводить к температуре заводских данных или к какой-либо определённой, нормируемой температуре.
Исключение в данном случае составляют результаты измерения тангенса угла диэлектрических потерь, так как нормирование величины тангенса в НД ведётся при температуре 20 °С.

6. Нормативные документы, на соответствие требованиям которых проводятся измерения:

  • Правила устройства электроустановок – ПУЭ, 7-е издание раздел 1, гл. Р.1.8, п.1.8.26 , пп.2, п. 1.8.27, пп.3 ( после монтажа)
  • Правила технической эксплуатации электроустановок потребителей – ПТЭЭП ( в эксплуатации)
  • Объем и Нормы испытаний электрооборудования – ОиНИЭ, (РД 153-34.45-51.300-97)
  • Рабочий проект, Документация завода –изготовителя электрооборудования

Атмосферные перенапряжения возникают при грозовых разрядах вблизи от электроустановок (индуктивные перенапряжения) и при прямых ударах молнии в линии электропередачи или открытые подстанции. Индуктивное перенапряжение представляет серьёзную опасность для установок напряжением до 35кВ, так как амплитуда этих перенапряжений лежит в пределах 300-500кВ, а импульсная прочность изоляции электроустановок 35кВ составляет около 200кВ. Наиболее опасным для электроустановок всех напряжений являются прямые удары молнии, которые сопровождаются протеканием очень больших токов (от десятка до нескольких сотен тысяч ампер) и возникновением перенапряжений, в десятки раз превышающих номинальное напряжение любой величины. Для защиты изоляции от индуктивных атмосферных перенапряжений на линиях электропередачи в ОРУ и в ЗРУ, связанных с воздушными линиями, применяют аппараты, называемые разрядниками.

Определяемые характеристики

  • Внешний осмотр
  • Измерение сопротивления изоляции
  • Измерение тока проводимости вентильных разрядников при выпрямленном напряжении
  • Измерение тока проводимости ограничителей перенапряжений
  • Проверка элементов, входящих в комплект приспособления для измерения тока проводимости ограничителя перенапряжений под рабочим напряжением
  • Измерение пробивного напряжения вентильных разрядников
  • Проверка герметичности разрядников

Нормы испытаний разрядников и ОПН.

Измерение сопротивления разрядников и ограничителей перенапряжения

Измерение проводится:

  • на разрядниках и ОПН с номинальным напряжением менее 3 кВ — мегаомметром на напряжение 1000 В;
  • на разрядниках и ОПН с номинальным напряжением 3 кВ и выше – мегаомметром на напряжение 2500 В.
    Измерение сопротивления проводится перед включением в работу и при выводе в плановый ремонт оборудования, к которому подключены защитные аппараты, но не реже 1 раза в 6 лет.
    Сопротивление разрядников РВН, РВП, РВО, GZ должно быть не менее 1000 МОм.
    Сопротивление элементов разрядников РВС должно соответствовать требованиям заводской инструкции. Сопротивление элементов разрядников РВМ, РВРД, РВМГ, РВМК должно соответствовать значениям, указанным в табл. 1.
    Сопротивление имитатора пропускной способности измеряется мегаомметром на напряжение 1000 В. Значение измеренного сопротивления не должно отличаться более чем на 50% от результатов заводских измерений или предыдущих измерений в эксплуатации.

Таблица 1.

Значение сопротивлений вентильных разрядников
Тип разрядника или элемента Сопротивление, МОм Допустимые изменения в эксплуатации по сравнению с заводскими данными или данными первоначальных измерений
не менее не более
РВМ-3 15 40 ±30%
РВМ-6 100 250
РВМ-10 170 450
РВМ-15 600 2000
РВМ-20 1000 10000
РВРД-3 95 200 В пределах значений, указанных в столбцах 2 и 3
РВРД-6 210 940
РВРД-10 770 5000
Элемент разрядника РВМГ
110М
400 2500 ±60%
150M 400 2500
220М 400 2500
330М 400 2500
400 400 2500
500 400 2500
Основной элемент разрядника РВМК-330, 500 150 500 ±30%
Вентильный элемент разрядника РВМК-330, 500 0,010 0,035
Искровой элемент разрядника РВМК-330, 500 600 1000 ±30%
Элемент разрядника РВМК-750М 1300 7000 ±30%
Элемент разрядника PBМK-1150 (при температуре не менее 10°С в сухую погоду) 2000 8000 ±30%

Сопротивление изоляции изолирующих оснований разрядников с регистраторами срабатывания измеряется мегаомметром на напряжение 1000—2500 В. Значение измеренного сопротивления изоляции должно быть не менее 1 МОм.
Сопротивление ограничителей перенапряжений с номинальным напряжением до 3 кВ должно быть не менее 1000 МОм.
Сопротивление ограничителей перенапряжений с номинальным напряжением 3—35кВ должно соответствовать требованиям инструкций заводов-изготовителей.
Сопротивление ограничителей перенапряжений с номинальным напряжением 110 кВ и выше должно быть не менее 3000 МОм и не должно отличаться более чем на ±30% от данных, приведенных в паспорте или полученных в результате предыдущих измерений в эксплуатации.

Таблица 2.

Измерение тока проводимости вентильных разрядников при выпрямленном напряжении
Тип разрядника или элемента Испытательное выпрямленное напряжение, кВ Ток проводимости при температуре разрядника 20°С, мкА
не менее не более
РВС-15 16 450 620
РВС-15* 16 200 340
РВС-20 20 450 620
РВС-20* 20 200 340
РВС-33 32 450 620
РВС-35 32 450 620
РВС-35* 32 200 340
РВМ-3 4 380 450
РВМ-6 6 120 220
РВМ-10 10 200 280
РВМ-15 18 500 700
РВМ-20 28 500 700
РВЭ-25М 28 400 650
РВМЭ-25 32 450 600
РВРД-3 3 30 85
РВРД-6 6 30 85
РВРД-10 10 30 85
Элемент разрядника РВМГ-110М, 150М, 220М, 330М, 400, 500 30 1000 1350
Основной элемент разрядника РВМК-330, 500 18 1000 1350
Искровой элемент разрядника РВМК-330, 500 28 900 1300
Элемент разрядника РВМК-750М 64 220 330
Элемент разрядника РВМК-1150 64 180 320

*Разрядники для сетей с изолированной нейтралью и компенсацией емкостного тока замыкания на землю, выпущенные после 1975 г.

Примечание. Для приведения токов проводимости разрядников к температуре + 20*С следует внести поправку, равную 3% на каждые 10 градусов отклонения (при температуре больше 20“С поправка отрицательная).

П, М. Измерение тока проводимости ограничителей перенапряжений

Измерение тока проводимости ограничителей перенапряжений производится:

 

    1. Перед вводом в эксплуатацию:
      для ограничителей класса напряжения 3—110 кВ при приложении наибольшего длительно допустимого фазного напряжения;
      для ограничителей класса напряжения 150, 220*, 330, 500 кВ при напряжении 100 кВ частоты 50 Гц.
      *Для ограничителей перенапряжения 220 кВ допускается измерять ток проводимости при напряжении 75 кВ частоты 50 Гц.

 

    1. В процессе эксплуатации:
      для ограничителей класса напряжения 110 кВ и выше без отключения от сети 1 раз в год перед грозовым сезоном;
      для ограничителей, установленных в нейтрали трансформатора 110 кВ, при выводе его из работы, но не реже 1 раза в 6 лет;
      для ограничителей класса напряжения 110 кВ и выше при выводе из работы на срок более 1 мес.
      Методика проведения измерения тока проводимости, а также его предельные значения, при которых ограничитель выводится из работы, указаны в инструкции завода-изготовителя и в табл. 3 (для наиболее распространенных типов ОПН).

 

Таблица 3

Токи проводимости ограничителей перенапряжений при переменном напряжении частоты 50 Гц
Тип ограничителя перенапряжений Наибольшее рабочее напряжение частоты 50 Гц, кВ Ток проводимости при температуре 20°С, мА
Значение, при котором необходимо ставить вопрос о замене ограничителя Предельное значение, при котором ограничитель должен быть выведен из работы
ОПН-110У1 73 1,0 1,2
ОПН-1-110ХЛ4 73 2,0 2,5
ОПН-110ПН 73 0,9 1,2
ОПН-150У1 100 1,2 1,5
ОПН-150ПН 100 1,1 1,5
ОПН-220У1 146 1,4 1,8
ОПН-1-220ХЛ4 146 2,0 2,5
ОПН-220ПН 146 1,3 1,8
ОПН-330 210 2,4 3,0
ОПН-330ПН 210 2,2 3,0
ОПН-500У1 303 4,5 5,5
ОПН-500ПН 303 3,4 4,5
ОПН-750 455 6,0 7,2
ОПНО-750 455 4,5 5,5

Проверка элементов, входящих в комплект приспособления для измерения тока проводимости ограничителя перенапряжений под рабочим напряжением

Проверка производится на отключенном от сети ограничителе перенапряжений.
Проверка электрической прочности изолированного вывода производится для ограничителей ОПН-330 и 500 кВ перед вводом в эксплуатацию и при выводе в ремонт оборудования, к которому подключен ограничитель, но не реже 1 раза в 6 лет.
Проверка производится при плавном подъеме напряжения частоты 50 Гц до 10 кВ без выдержки времени.
Проверка электрической прочности изолятора ОФР-10-750 производится напряжением 24 кВ частоты 50 Гц в течение 1 мин.
Измерение тока проводимости защитного резистора производится при напряжении 0,75 кВ частоты 50 Гц. Значение тока должно находиться в пределах 1,8-4,0 мА.

Измерение пробивного напряжения вентильных разрядников

Измерение производится специально обученным персоналом при ремонте разрядника со вскрытием по методике предприятия-изготовителя и наличии установки, обеспечивающей ограничение времени приложения напряжения. Значения пробивных напряжений разрядников приведены в табл. 4.

Таблица 4

Пробивные напряжения разрядников и элементов разрядников при частоте 50 Гц
Тип разрядника или элемента Действующее значение пробивного напряжения при частоте 50 Гц, кВ
не менее не более
РВП, РВО-6 16 19
РВП, РВО-10 26 30,5
РВС-15 35 51
РВС-20 42 64
РВС-33 66 84
РВС-35 71 103
РВМ-6 14 19
РВМ-10 24 32
РВМ-15 33 45
РВМ-20 45 59
РВРД-3 7,5 9
РВРД-6 15 18
РВРД-10 25 30
Элемент разрядников РВМГ-110М, 150М, 220М, 330М, 400, 500 60,5 72,5
Основной элемент разрядников РВМК-330, 500 44,5 50
Искровой элемент разрядников РВМК-330, 500 76 81
Элемент разрядника РВМК-750М 163 196
Элемент разрядника РВМК-1150 181 212

Проверка герметичности разрядников

Проверка герметичности производится в случае проведения капитального ремонта разрядника со вскрытием. Проверка производится при разрежении 300-400 мм рт. ст. Изменение давления при перекрытом вентиле за 1-2 ч не должно превышать 0,5 мм рт. ст.

Трубчатые разрядники

Проверка состояния поверхности разрядника

Наружная поверхность разрядника не должна иметь ожогов электрической дугой, трещин, расслоений и царапин глубиной более 0,5 мм на длине более трети расстояния между наконечниками.

Измерение поверхностного электрического сопротивления фибробакелитового разрядника

Проверка производится перед установкой разрядника мегаомметром на напряжение 2500 В. Поверхностное электрическое сопротивление должно быть не ниже 10000 МОм.

Измерение диаметра дугогасительного канала разрядника

Значение диаметра канала должно соответствовать данным, приведенным в табл. 5

П, М. Измерение внутреннего искрового промежутка разрядника

При вводе в эксплуатацию размеры внутреннего искрового промежутка должны соответствовать данным, приведенным в табл. 22.1. При межремонтных испытаниях эти размеры не должны превышать значений, указанных в табл. 22.1 для разрядников РТФ 6-10 кВ – на 3 мм, РТФ-35 – на 5 мм, РТВ 6-10 кВ – на 8 мм, РТВ 20-35 кВ – на 10 мм, РТВ-110 – на 2 мм.

П, М. Измерение внешнего искрового промежутка разрядника

Размеры внешнего искрового промежутка должны соответствовать данным, приведенным в табл. 5

Таблица 5

Технические данные трубчатых разрядников
Тип разрядника Номина-льное напряжение, кВ Ток отклю-чения, кA Внешний искровой промежуток, мм Начальный диаметр дугогасительного канала, мм Конечный диаметр дугогасительного канала, мм Начальная длина внутреннего искрового промежутка, мм Конечная длина внутреннего искрового промежутка, мм
РТФ-6 6 0,5-10 20 10 14 150±2 -
РТВ-6 6 0,5-2,5 10 6 9 60 68
2-10 10 10 14 60 68
РТФ-10 10 0,5-5 25 10 11,5 150±2 -
0,2-1 25 10 13,7 225±2 -
РТВ-10 10 0,5-2,5 20 6 9 60 68
2-10 15 10 14 60 68
РТФ-35 35 0,5-2,5 130 10 12,6 250±2 -
1-5 130 10 15,7 200±2 -
2-10 130 16 20,4 220±2 -
РТВ-35 35 2-10 100 10 16 140 150
РТВ-20 20 2-10 40 10 14 100 110
РТВ-110 110 0,5-2,5 450 12 18 450±2 -
1-5 450 20 25 450±2 -

П, М. Проверка расположения зоны выхлопа разрядника

Зоны выхлопа разрядников разных фаз не должны пересекаться и охватывать элементы конструкций и проводов ВЛ. В случае заземления выхлопных обойм разрядников допускается пересечение их зон выхлопа.

Нормативные документы:

  • При вводе в эксплуатацию: ПУЭ: 7-e издание, глава 1.8 п. 1.8.31., 1.8.32
  • В эксплуатации: ПТЭЭП, прил.3, п.17, 18.

Измерение сопротивления изоляции

Изоляция кабельных линий проверяется на сопротивление постоянному току, это один из основных показателей ее исправности. Испытание изоляции кабельных линий дает возможность получить не только картину ее состояния на текущий момент, но и выяснить, насколько успешно она будет противостоять воздействию тока повышенного напряжения в случаях, когда произойдет нарушение работы электрообъекта. При испытаниях изоляции кабельной линии повышенным выпрямленным напряжением измеряют ток утечки.

Измерение сопротивления изоляции кабельных линий проводится мегаоомметром. Мегаомметр – прибор, состоящий из источника напряжения (постоянного или переменного генератора с выпрямителем тока) и измерительного механизма. На сегодняшний день самыми распространенными моделями мегаоомметров являются Е6-24, UT511, 512, 513 производства республики Казахстан, Greenlee 5880, 5882, 5990, Fluke, SEW, Megger, Sonel (MIC2500, MIC-3) и другие. Сопротивление изоляции кабельных линий должно находиться в пределах нормы по требованиям ПУЭ при рабочем напряжении в 380 и 220В. Для силовых линий на напряжение 0,4кВ при напряжении мегаомметра 2,5 кВ допустимое сопротивление изоляции должно превышать 0,5 МОм, и равняться 0,5 МОм при напряжении в 1кВ для электропроводок. Для силовых кабельных линий выше 1 кВ сопротивление изоляции не нормируется. Измерения сопротивления изоляции проводятся относительно фаз друг к другу и каждой фазы – к земле.

Допуск к работе с мегаомметром получает только лицо с группой по электробезопасности не ниже III.У лиц, проводящих испытания повышенным напряжением должен быть допуск к специальным видам работ, что отмечается в удостоверении по электробезопасности. При измерении сопротивления изоляции силовых линий и электропроводок, должны быть соблюдены требования безопасности: отключены приборы, коммутирующиеся с силовой линией. Часть установки, где проводятся измерения, должна быть освобождена от людей. С объекта испытаний должно быть снято напряжение, кабель при испытаниях должен быть разземлен.  В помещениях с двух сторон кабеля – объекта испытаний должны быть развешаны предупреждающие плакаты с надписями: «СТОЙ! НАПРЯЖЕНИЕ!» «ИСПЫТАНИЯ! ОПАСНО ДЛЯ ЖИЗНИ!».

Испытание сопротивления изоляции

К испытанию сопротивления изоляции кабельных силовых линий предъявляются более высокие требования. Так, персонал наладчиков должен пройти проверку здоровья и  иметь медицинскую справку, а также доказать наличие необходимых знаний, умений и навыков перед специальной комиссией. Группа по электробезопасности у специалистов должна быть не ниже IV. Подтверждение квалификации и прохождения проверок на профпригодность и медицинский допуск отражаются записью в строке «Свидетельство на право проведения специальных работ». В состав бригады по испытанию сопротивления изоляции кабельных линий должны входить минимум два человека, у которых уже есть стаж работы не менее 3 месяцев и опыт проведения высоковольтных испытаний.

Руководитель работ должен иметь группу по электробезопасности не ниже пятой, у производителя работ группа по электробезопасности- не ниже IV и квалификация инженера-электрика. Остальные члены бригады должны быть инженерами-электриками или электромонтерами со специализацией «испытания и измерения», с группой по безопасности не ниже III. Охранники места проведения испытаний могут быть со второй группойпо ЭБ, но они не допускаются непосредственно к проведению работ по испытанию сопротивления изоляции кабельных линий.

Помимо требований к персоналу, сотрудники электроизмерительной лаборатории и руководство организации обеспечивают соблюдение правил техники безопасности для помещения. Помимо надписей «СТОЙ! НАПРЯЖЕНИЕ!» в недоступных для отслеживания местах, само место испытаний и испытательная установка должны быть огорожены маркировочной лентой и снабжены плакатами с надписью, обращенной наружу: «ИСПЫТАНИЯ! ОПАСНО ДЛЯ ЖИЗНИ!» а на приводах отключенных разъединителей – «НЕ ВКЛЮЧАТЬ! РАБОТАЮТ ЛЮДИ». Если есть возможность, у места испытания сопротивления изоляции кабельных линий должен быть выставлен охранник или наблюдающий. До сотрудников организации должна быть доведена информация о проводящихся испытаниях, помещение – очищено от посторонних. Если проводятся дополнительные испытания или измерения того же оборудования, работающие бригады или отдельные работники должны быть удалены на общих основаниях со сдачей нарядов допускающему лицу.

Требования безопасности при испытаниях сопротивления изоляции кабельных линий изложены в «Правилах устройства электроустановок», «Межотраслевых правилах по охране труда (правила безопасности) при эксплуатации электроустановок», «Правилах эксплуатации электроустановок», а также инструкциях по охране труда и эксплуатации используемого при испытаниях высоковольтного оборудования. За наложение и снятие заземления отвечает одно лицо. Работы должны производиться под наблюдением ответственного, в диэлектрических перчатках, и – одним из сотрудников бригады по испытанию кабельной линии: «Независимо от заземления вывода испытательной установки лицо, производящее присоединение в испытательной схеме, должно наложить заземление на соединительный провод и на изолированные от земли части испытательного оборудования. Снимать эти заземления можно только после окончания переключений». Незаземленные при испытаниях кабельной линии провода и части установок по умолчанию рассматриваются как находящиеся под испытательным напряжением.

Испытываемое оборудование присоединяется к сети через штепсельный разъем и двухполюсный выключатель. Оператор пульта должен проводить подсоединение. С использованием средств защиты. При этом с момента начала испытаний до момента их окончания, у пульта должен находиться как минимум один человек. В случае возгорания, замыкания, задымления, отключении питания и других чрезвычайных ситуациях, напряжение немедленно снимается рубильником с видимым разрывом по стороне 0,4 кВ. В случае отключения питания запрещается выяснять причину отключения до снятия напряжения с испытательной установки и объекта испытаний и заземления оборудования. Если чрезвычайная ситуация возникла, дальнейшие испытания прекращаются. Эти и другие вопросы требований техники безопасности при испытаниях кабельных линии повышенным напряжением подробно рассмотрены в НД ПОТ, которым и рекомендуется руководствоваться.

Испытание кабельной линии

Для испытания кабельной линии, как и при измерениях, важны внешние условия. Так, необходимо проводить испытания в сухом помещении, либо в сухую погоду, при температуре не ниже пяти градусов Цельсия выше нуля. Атмосферное давление фиксируется и заносится в протокол, но как таковое, не оказывает влияние на результаты измерений. При  испытаниях кабельной линии особое значение имеет влажность: при влажности воздуха более 80% на кабелях, проводах и частях испытываемой установки, а также и на испытательном оборудовании образуется водяной конденсат, который может стать причиной пробоя изоляции. Пробой изоляции мгновенно приводит к выходу повреждению кабельной линии.

Аппаратура, с помощью которой производят испытания кабельных линий, состоит из нескольких установок:

  • испытательный трансформатор;
  • защитная аппаратура;
  • регулирующее устройство;
  • контрольно-измерительная аппаратура.

Специалистами нашей электроизмерительной лаборатории используется установка АИД-70, а также мощные передвижные высоковольтные испытательные установки, которые обладают достаточным уровнем защиты и надлежащим уровнем подготовлены для проведения испытаний. Для измерения емкости конденсаторов или обмоток силовых трансформаторов и измерения тангенса диэлектрических потерь используются мосты переменного тока типа Р2056М, СА-7100, Тангенс 2000. Перед началом измерений и испытаний кабельной линии специалисты ЭЛ тщательно проверяют подключение испытательной установки и объекта испытаний.  Все испытательное оборудование и срества измерений ЭЛ проходят поверку и аттестацию в соответствующих государственных органах, к которым относится Центр стандартизации и метрологии. Поверка происходит по методикам с выдачей Аттестатов испытаний или свидетельств о поверке сроком на 12 или 24 месяца. Все данные заносятся в рабочую тетрадь, в частности – дата измерений, температура воздуха, влажность, давление, данные измерительной аппаратуры, данные измеряемого объекта, результаты внешнего осмотра, используемая схема измерения/испытания. Все данные испытаний сравниваются с требованиями НД, и на основании сравнения выдаётся заключение о пригодности объекта к эксплуатации. По результатам испытаний заполняется протокол установленной формы, в соответствии с требованиями НД (ГОСТ Р 17025-2006) и согласованный с Ростехнадзором.

Нормативные документы, на соответствие требованиям которых проводятся измерения:

  • ПУЭ 7-е издание раздел 1, гл. 1.8;
  • РД 34.45-51.300-97 "Объем и нормы испытаний электрооборудования";
  • Документация заводов-изготовителей оборудования.

Грозовые разряды, воздействуя на воздушные линии электропередачи и элементы ОРУ, создают в электроустановках большие напряжения, во много раз превосходящие номинальную величину (атмосферные перенапряжения).

Результатом атмосферных перенапряжений являются повреждения изоляции электроустановок, перекрытия фарфоровых изоляторов на линиях и подстанциях, пробои внутренней изоляции аппаратов и обмоток трансформаторов и машин и т.д.

Кроме атмосферных перенапряжений в электроустановках возникают коммутационные перенапряжения. Коммутационные перенапряжения возникают в процессе коммутации электрических цепей с помощью выключателей.

Кроме вышесказанного в электрических сетях с изолированной нейтралью возникают перенапряжения в результате замыкания одной из фаз на землю.

В сетях с воздушными линиями наибольшее число перенапряжений приходится на долю грозовых (80% случаев), перенапряжений от замыканий на землю гораздо меньше – около 10%, и менее всего коммутационных перенапряжений – примерно 5% случаев.

В кабельных сетях на первом месте стоят перенапряжения от дуговых замыканий на землю (80% случаев), на втором месте – коммутационные перенапряжения (около 10%) и около 10% повреждений приходится на долю феррорезонасных перенапряжений, грозовые перенапряжения в кабельные сети практически не проникают.

Уровни и вероятность появления коммутационных перенапряжений зависит от типа и качества настройки коммутационной аппаратуры. В качестве аппаратов защиты электрических сетей от перенапряжений применяются ОПН (ограничитель перенапряжений).

Характеристики, проверяемые при испытаниях ограничителя перенапряжений:

  • Внешний осмотр.
  • Измерение сопротивления изоляции.
  • Измерение тока проводимости ОПН.
  • Проверка элементов, входящих в комплект приспособления для измерения тока проводимости ограничителя перенапряжений под рабочим напряжением.

Нормативные документы, на соответствие требованиям которых проводятся измерения:

  • ПУЭ (Правила устройства электроустановок), 7-е изд., гл. 1.8, п. 1.8.31, пп. 1,3,4
  • ПТЭЭП (Правила технической эксплуатации электроустановок потребителей), Прил. 3 Раздел 17.
  • Паспорт завода-изготовителя.
  • РД 34.45-51.300-97. (Объем и нормы испытаний электрооборудования), Раздел 21, пп. 21.1, 21.3, 21.4, 21.6.